Μέλη
  • Σύνολο μελών: 7,374
  • Latest: iguzovec
Stats
  • Σύνολο μηνυμάτων: 360,324
  • Σύνολο θεμάτων: 11,759
  • Online today: 227
  • Online ever: 1,061 (Οκτωβρίου 10, 2023, 08:28:42 ΠΜ)
Συνδεδεμένοι χρήστες
  • Users: 0
  • Guests: 276
  • Total: 276

Ελληνική αντισεισμική ευρεσιτεχνία για το περιβάλλον

Ξεκίνησε από seismic, Μάρτιος 29, 2010, 10:52:05 ΠΜ

« προηγούμενο - επόμενο »

κώστας

[size=13]Ρε seismic
σε διαβάζω πού και πού, αν όχι όλα ένα γρήγορο σκανάρισμα το κάνω πάντως και εκεί στο #72 κάπου γράφεις "...κατά την χρονική περίοδο που το ένα πλαίσιο είναι αστήριχτο από το έδαφος..." και σκέφτομαι ότι αν κάνει σεισμό κατά τον οποίο η πολυκατοικία θα σηκώνεται στον αέρα από τη μία μεριά, μετά από την άλλη κ.ο.κ. ενώ οι ένοικοι εντός, θα εκσφενδονίζονται προφανώς από τον ένα τοίχο στον απέναντι και τούμπαλιν, τότε όσοι από τους ενοίκους επιβιώσουν του κοπανήματος (και αν απέναντι δεν τύχουν σε κανά παράθυρο από το οποίο θα βρεθούν στην απέναντι οικοδομή, ελπίζω όχι πάλι σε παράθυρο) θα είναι οι μόνοι κάτοικοι της πόλης, αν όχι της περιοχής, αν όχι της χώρας ή του πλανήτη γενικότερα, αφού μάλλον μιλάμε για 15-20 ρίχτερ. Και αν γλυτώσω εγώ και οι φοιτήτριες δίπλα, πάει στο διάολο, θα το αντέξω· αδερφές ξε-αδερφές άμα είναι για την συνέχιση της ανθρωπότητας, θα παραμερίσουμε τους ηθικούς φραγμούς. Αλλά άμα γλυτώσω εγώ και η διαχειρίστρια από πάνω, τι κάνω ρε κουμπάρε; Εδώ σκοτωνόμαστε τώρα που συμβιώνουμε με άλλα 7 δισεκατομμύρια...
[/size]
eLe

seismic

Συμφωνώ μαζί σου Κώστα......πολλά κουνιόνται αλλά δεν πέφτουν.... :mryellow:
Αλήθεια γιατί δεν πέφτουν???
Γιατί είναι ελαστικά ή γιατί είναι προτεταμένα??/ :lol:

seismic

Η Εδαφομηχανική και η χρησιμότητα του υδραυλικού ελκυστήρα.

Ο Πολιτικός Μηχανικός σχεδόν καθημερινά αντιμετωπίζει προβλήματα που
αφορούν το έδαφος.
Το χρησιμοποιεί σαν μέσο θεμελίωσης των τεχνικών
έργων, σαν υλικό κατασκευής επιχωμάτων, φραγμάτων και άλλων χωμάτινων
έργων, σχεδιάζει κατασκευές για να το αντιστηρίξει σε περιπτώσεις εκσκαφών ή
σηράγγων και τέλος πρέπει να επιλύσει ειδικά προβλήματα που έχουν σχέση με το
έδαφος, όπως: αποστραγγίσεις, αντλήσεις, διάδοση κραδασμών και σεισμικών
δονήσεων κλπ. Τα ανωτέρω προβλήματα και οι μέθοδοι επίλυσής τους εξαρτώνται
άμεσα από τη μηχανική συμπεριφορά των εδαφικών υλικών, που αποτελεί το
κύριο αντικείμενο της Εδαφομηχανικής ή γενικότερα της Γεωτεχνικής Μηχανικής.

Θεωρώ δεδομένο ότι σαν μηχανικοί ξέρετε να αντιμετωπίζετε τα πάρα πάνω προβλήματα με διάφορους τρόπους, όπως ξέρετε και το κόστος που μπορεί να φθάσει η κατασκευή ώστε να περιορίσετε τις παραμορφώσεις του εδάφους.

Ακόμα ξέρετε ότι οι άκαμπτοι φορείς σε διέγερση σεισμού, επιφορτίζουν με περισσότερες τάσεις την θεμελίωση, από ότι οι πλάστιμοι φορείς.
Σε περίπτωση μάλιστα όπου ο φορέας είναι ( σαν αυτόν που προτείνω εγώ )προτεταμένος με το έδαφος, ( υπερτασικός ) τότε οι επιφορτίσεις των τάσεων της θεμελίωσης είναι ακόμα μεγαλύτερες.

Ακόμα ξέρουμε ότι το έδαφος είναι γενικά ιδιαίτερα ανομοιογενές λόγω
της φυσικής του γένεσης και των επακόλουθων μετακινήσεων του φλοιού της γης,
έχει μεταβλητή σύνθεση και ανεξέλεγκτη μηχανική συμπεριφορά, οπότε αυτοί οι λόγοι μπορούν να δημιουργήσουν διαφορετικές παραμορφώσεις του εδάφους σε κάθε θεμελίωση του ιδίου φορέα, έστω και αν τα φορτία και η θεμελίωση είναι ίδια.
Δεδομένων αυτών που αναφέραμε πάρα πάνω, η χρήση του υδραυλικού ελκυστήρα θα δημιουργούσε σοβαρά προβλήματα στις κατασκευές, διότι στα χαλαρά εδάφη ο σχεδιασμός του φορέα θα περνούσε τις μέγιστες ανεκτές μετακινήσεις λόγο μεγαλύτερων παραμορφώσεων του εδάφους.

Αυτά όμως δεν συμβαίνουν με τον υδραυλικό ελκυστήρα, διότι είναι σχεδιασμένος έτσι ώστε... όχι μόνο να μην δημιουργεί προβλήματα παραμόρφωσης του εδάφους θεμελίωσης, αλλά και να τα επιλύει, μειώνοντας στο ελάχιστο το πρόβλημα της παραμόρφωσης των εδαφών της θεμελίωσης που οφείλετε τόσο στα στατικά φορτία της κατασκευής, όσο και στις μέλλουσες σεισμικές φορτίσεις.
Πως ο υδραυλικός ελκυστήρας επιτυγχάνει την ελάχιστη παραμόρφωση της βάσεως του εδάφους, από οποιαδήποτε άλλη μέθοδο

Αν είχαμε ένα συρματόσχοινο του οποίου η μία άκρη ήταν πακτωμένη με την βοήθεια μιας άγκυρας στα βάθη μιας γεώτρησης κάτω από την βάση, και στο άλλο του άκρο αφού διαπερνούσε ελεύθερο τα κάθετα στοιχεία, του εξασκούσαμε προένταση στο δώμα της κατασκευής, τότε θα είχαμε την παραμόρφωση του εδάφους αν ήταν χαλαρό.

Αυτό δεν συμβαίνει με τον υδραυλικό ελκυστήρα.
Η αιτία βρίσκεται στον μηχανισμό της άγκυρας, και συγκεκριμένα στους δύο σωλήνες που φέρει.

http://postimage.org/image/2dmcy79yc/

Αυτοί οι σωλήνες έχουν διαφορετική διάμετρο, έτσι ώστε ο ένας να ολισθαίνει μέσα στον άλλον.
Ο εσωτερικός σωλήνας είναι συνδεδεμένος με τον τένοντα.
Ο εξωτερικός σωλήνας που είναι και ο υποδοχέας του τένοντα, καταλήγει κάτω από την βάση, και αυτός είναι η αιτία που η βάση δεν υποχωρεί όταν το έδαφος παραμορφωθεί.

Αυτός ο σωλήνας όταν δέχεται τα φορτία της βάσης, τείνει να υποχωρήσει κάθετα.

Αδυνατεί όμως να υποχωρήσει κάθετα, διότι είναι συνδεδεμένος με πίρους και μπάρες πυραμοειδούς μορφής, στο άλλο άκρο του, οι οποίες μπάρες μεταβιβάζουν τα φορτία της βάσης στα πρανή της γεώτρησης.
Αυτή η μεταβίβαση των φορτίων μέσο των μπαρών, υποβοηθείται και από τις άλλες πυραμοειδούς μορφής μπάρες οι οποίες είναι ανεστραμμένες και συνδεδεμένες με τον εσωτερικό σωλήνα του τένοντα.
Κατ αυτόν τον τρόπο, οι μπάρες σπρώχνουν κατά ένα σημείο από διαφορετική κατεύθυνση, και αποκλείουν την ολίσθηση στα πρανή της γεώτρησης.
Η πάνω σωλήνα μεταβιβάζει τάσεις της βάσης στα πρανή της γεώτρησης, και η κάτω σωλήνα μεταβιβάζει τάσεις του τένοντα στα πρανή της γεώτρησης.

http://postimage.org/image/2mlql3ag4/

Δηλαδή έχουμε ένα νέο είδος πασσάλου τριβής, με το επιπλέον πλεονέκτημα την συνεχή τάση στα πρανή της γεώτρησης που εφαρμόζεται μέσο του τένοντα και των στατικών φορτίων του φέροντα.

Ξέρουμε ότι το σύνολο σχεδόν των παραμορφώσεων του εδάφους
είναι μή-αντιστρεπτές, δηλαδή δεν αναιρούνται με την απομάκρυνση του αιτίου
που τις προκάλεσε
Οι πάσσαλοι τριβής αφού εισχωρήσουν στο έδαφος δημιουργούν παραμορφώσεις που είναι μη - αντιστρεπτές, που αυτό σημαίνει μικρή τριβή όταν δέχονται καθοδικά φορτία, και μηδαμινή τριβή και αντίσταση σε ανοδικά φορτία.

http://postimage.org/image/14tj1webo/

Ο υδραυλικός ελκυστήρας έχει το πλεονέκτημα ( λόγο συνεχών τάσεων στα πρανή της γεώτρησης )
να έχει μεγαλύτερες πλάγιες τριβές από ότι ο πάσσαλος τριβής.

Είναι σαφές ότι τα φορτία της
κατασκευής που ασκούνται στο έδαφος στα σημεία έδρασης των στοιχείων
θεμελίωσης μεταφέρονται και πέραν των σημείων αυτών με την ανάπτυξη τάσεων, οι
οποίες προκαλούν παραμόρφωση του εδάφους στην περιοχή της θεμελίωσης. Όσο
αυξάνει η απόσταση από τα σημεία έδρασης, οι αναπτυσσόμενες τάσεις μειώνονται
και συνεπώς μειώνονται και οι απαιτήσεις ανθεκτικότητας του εδάφους.
Σε όλες τις περιπτώσεις, όμως, οι πρόσθετες τάσεις λόγω των φορτίων της
κατασκευής είναι σημαντικές μόνο σε μια περιοχή κάτω από τα σημεία έδρασης
(ζώνη επιρροής).

Με τον υδραυλικό ελκυστήρα έχουμε για πρώτη φορά δύο ζώνες επιρροής.
α) μία κάτω από την βάση.
β) μία προς τα πρανή της γεώτρησης.

Κατ αυτόν τον τρόπο έχουμε διπλή στήριξη της βάσης στο έδαφος.

Ακόμα η συμπύκνωση της χαλαρότητας του εδάφους από τις τάσεις του υδραυλικού μηχανισμού, προσφέρουν καλύτερη θεμελίωση.
Όταν μάλιστα τοποθετήσουμε και άλλους ελκυστήρες κοντά στον κύριο ελκυστήρα, τότε η βελτίωση του εδάφους είναι σημαντική διότι η ζώνη επιρροής δεν υφίσταται μόνο στα πρανή της γεώτρησης, αλλά καθ όλο το εμβαδόν του φέροντα, και πέραν από αυτόν.

Δηλαδή μπορούμε σε ένας φέροντα με κοιτόστρωση να τοποθετήσουμε δύο ειδών ελκυστήρες.
α) Τους υδραυλικούς ελκυστήρες με τους οποίους θα εφαρμόσουμε προένταση στα κάθετα στοιχεία μεταξύ δώματος και εδάφους.
β) Τον απλό ελκυστήρα, ( http://postimage.org/image/15or8eeuc/ )με τον οποίον θα εφαρμόσουμε προένταση μεταξύ του επιπέδου της βάσης και των πρανών της γεώτρησης.
Κατ αυτόν τον τρόπο, θα έχουμε συμπύκνωση των εδαφών σε όλο το εμβαδόν της κοιτόστρωσης, και πέραν αυτής.

seismic

Ο Ισοστατικός και Υπερστατικός φορέας και ο Υδραυλικός ελκυστήρας.


Τα κάθετα στοιχεία ( κολόνες τοιχία ) ενός φέροντα που είναι προτεταμένα με το έδαφος με τον μηχανισμό του υδραυλικού ελκυστήρα στην διέγερση ενός σεισμού, αναλαμβάνουν πλάγιες σεισμικές φορτίσεις όμοιες ( προς την φορά και το είδος των τάσεων ) εκείνων που δέχεται και ένας μονόπακτος οριζόντιος φορέας ( πρόβολος ) στην σεισμική τεκτονική διέγερση ενός σεισμού.

Τόσο τα κάθετα στοιχεία κατά τον σεισμό, όσο και ο μονόπακτος οριζόντιος φορέας παραλαμβάνουν
α) Ροπές
β) Κάμψεις
γ) Τέμνουσες
δ) και έχουν και τα δύο κρίσιμες διατομές.

Δεδομένου της ομοιότητας των δύο φορέων, μπορούν και οι δύο να εξεταστούν ως ισοστατικοί, ή υπερστατικοί φορείς.
Οπότε
α) Ότι χαρακτηριστικά έχουν οι ισοστατικοί φορείς αυτά ισχύουν τόσο για τα κάθετα αθροιζόμενα καθ ύψος στοιχεία, όσο και για τους μονόπακτους φορείς.
β) Ότι χαρακτηριστικά έχουν οι υπερστατικοί φορείς, αυτά ισχύουν τόσο για τα κάθετα αθροιζόμενα καθ ύψος στοιχεία, όσο και για τους μονόπακτους φορείς.

Ας εξετάσουμε τώρα ένα υπερστατικό και έναν ισοστατικό μονόπακτο φορέα.

Τα στατικά μεγέθη ενός υπερστατικού φορέα είναι
α) Τα μεγέθη του αντίστοιχου ισοστατικού φορέα
β) Συν κάποια συμπληρωματικά μεγέθη τα οποία προκύπτουν όταν επιλύσουμε τον ισοστατικό φορέα με τις ροπές που αναπτύσσονται στις υπερστατικές στηρίξεις.

Στους υπερστατικούς φορείς, λόγο των συμπληρωματικών στατικών μεγεθών, προκύπτουν διαφοροποιήσεις συγκρινόμενοι με τους ισοστατικούς μονόπακτους φορείς.

Αυτές είναι
α) Μικρότερες ροπές στα ανοίγματα.
β) Περισσότερες κρίσιμες διατομές σε κάμψη.
γ) Μεγαλύτερες αντοχές προς τις τέμνουσες, ιδικά στην θέση της πάκτωσης.

Συμπέρασμα
α) Μικρότερες ροπές στα ανοίγματα επιτρέπουν μικρότερες διατομές των φορέων.
β) Περισσότερες κρίσιμες διατομές επιτρέπουν ανακατανομή της έντασης του φορέα σε περισσότερα σημεία αυξάνοντας κατ αυτόν τον τρόπο την φέρουσα ικανότητα.
Χάρις στην δυνατότητα ανακατανομής της έντασης, η φέρουσα ικανότητα του φορέα αυξάνει κατά 33%


Θα εξετάσουμε βάση των άνω αναφερθέντων, κατά πόσο η προένταση των κάθετων στοιχείων χρησιμοποιώντας τον υδραυλικό ελκυστήρα δομικών έργων καθιστά εφικτή την αποτροπή του μηχανισμού ορόφου.
Ερώτηση
Πως δημιουργείται ο μηχανισμός ορόφου?
Απάντηση
Όταν τα οριζόντια φορτία του σεισμού επενεργούν σε μία μόνο κρίσιμη διατομή ενός ορόφου, και δεν διαμοιράζονται καθ όλον τον κάθετο άξονα των κάθετων στοιχείων.
Ερώτηση
Γιατί η κάθετη προένταση από μόνη της καταργεί τον μηχανισμό ορόφου?
Απάντηση
Διότι λόγο της προέντασης των κάθετων στοιχείων, οι κρίσιμες διατομές είναι περισσότερες από μία και επιτρέπουν ανακατανομή της έντασης του φορέα σε περισσότερα σημεία αυξάνοντας κατ αυτόν τον τρόπο την φέρουσα ικανότητα των κάθετων στοιχείων στις πλάγιες φορτίσεις του σεισμού, αποτρέποντας κατ αυτόν τον τρόπο τον μηχανισμό ορόφου.

Ακόμα
Στον σεισμό, ο κάθε ένας από τους δύο κάθετους τένοντες οι οποίοι είναι τοποθετημένοι στα δύο άκρα ενός τοιχίου αλληλοεξουδετερώνει τα φορτία των πλευρικών τάσεων που αναπτύσσονται κατά των σεισμό.

Υπάρχει το πλεονέκτημα ότι το κάθετο στοιχείο δεν κινδυνεύει από λυγισμό διότι ο κάθε τένοντας του τοιχίου, αντιδρά στον λυγισμό εναλλάξ.
Πράγματι, εάν αρχίσει το φαινόμενο του λυγισμού, οι τένοντες τείνουν να επιμηκυνθούν, για να ακολουθήσουν τον λυγισμό του κάθετου στοιχείου.

Επειδή όμως οι τένοντες υπόκεινται σε μεγάλες εφελκυστικές τάσεις, αντιδρούν στην παραμόρφωση που τους επιβάλουν τα εξωτερικά φορτία του σεισμού, εξουδετερώνοντας τον λυγισμό, οπότε και την συγκέντρωση τον φορτίων σε ένα σημείο ( κρίσιμη διατομή ) που έχει σαν αποτέλεσμα τον μηχανισμό του ορόφου.

Η προένταση υπόκειται σε κανόνες η οποίοι βασίζονται στην αρχή της επαλληλίας των τάσεων.

Σύμφωνα με αυτήν την αρχή, όταν επάνω σε ένα σώμα ενεργούν συγχρόνως δύο φορτίσεις, οι πλευρικές και διατμητικές τάσεις των κάθετων στοιχείων, σε κάθε σημείο του σώματός τους, ισούται με το αλγεβρικό άθροισμα των δυο στοιχείων τάσεων, τις οποίες θα προκαλούσαν στο ίδιο σημείο οι δύο αυτές φορτίσεις, εάν ενεργούσαν χωριστά η κάθε μία.

Η αρχή της επαλληλίας ισχύει εφ όσον οι τάσεις που αντιστοιχούν στις πραγματικές φορτίσεις, περιέχονται μεταξύ ορισμένων ορίων.
Έστω και αν οι τάσεις δρουν με εξωτερική φόρτιση μεταβαλλόμενης φοράς.

seismic

Άξονας Βέλτιστης Στρέψης στα Ασύμμετρα Πολυώροφα Κτίρια

Στα πολυώροφα κτίρια με ασύμμετρες κατόψεις τα οποία υποβάλλονται σε οριζόντιες σεισμικές δυνάμεις, τα δάπεδα των ορόφων υφίστανται ταυτόχρονα μεταφορικές και στρεπτικές μετακινήσεις.

Τα πολυώροφα κτίρια υφίστανται διαφορά φάσης και μεγέθους τιμής της στρέψης καθ ύψος στις πλάκες.

Οι μετακινήσεις αυτές δημιουργούν στα φέροντα δομικά στοιχεία της κατασκευής τάσεις και παραμορφώσεις πολύ διαφορετικές από εκείνες που θα αναπτύσσονταν στα ίδια στοιχεία εάν η κατασκευή ήταν συμμετρική και ως εκ τούτου η μετακίνηση καθαρά μεταφορική.

Έχει αποδειχθεί από μετασεισμικές παρατηρήσεις ότι ένα μεγάλο ποσοστό βλαβών ή και καταρρεύσεων κτιρίων με ασύμμετρες κατόψεις, οφείλεται στις έντονες στρεπτομεταφορικές ταλαντώσεις, οι οποίες δημιουργούν υψηλές απαιτήσεις πλαστιμότητας στα περιμετρικά ιδίως
φέροντα στοιχεία.

Όλα αυτά για τον υφιστάμενο σχεδιασμό, ο οποίος απαιτεί πλάστιμα φέροντα στοιχεία, και έλεγχο της σεισμικής απόκρισης με την δυναμική φασματική μέθοδο και την απλοποιημένη φασματική μέθοδο.

Η μέθοδος του προτεταμένου φορέα με το έδαφος που εφαρμόζει ο υδραυλικός ελκυστήρας ασχολείται κυρίως με το μέγεθος το οποίο σχετίζεται με την ακτίνα δυστρεψίας του κτηρίου (στρεπτική ευαισθησία του κτιρίου )

Την ελαχιστοποίηση της στρεπτικής ευαισθησία του προτεταμένου κτιρίου με το έδαφος η μέθοδός μου την αντιμετωπίσει με την κατάλληλη διαστασιολόγιση

α) στην τομή, των κάθετων στοιχείων ( διαστάσεις ικανές για την παραλαβή της στρέψης )

β) στο σχήμα των κάθετων στοιχείων ( Παραλληλόγραμμα σχήματα τοιχίων, σταυροειδείς τομές, και φρεάτια, είναι τα κατάλληλα σχήματα)

γ) την κατεύθυνση των κάθετων φερόντων στοιχείων πάνω στην κάτοψη.

Από μόνη της η προένταση μεταξύ εδάφους και δώματος, βελτιώνει το οπλισμένο σκυρόδεμα των φερώντων κάθετων στοιχείων, ως προς την αντοχή τους στις μεταφερόμενες φορτίσεις της στρέψης.
Οι παραμορφώσεις στην στρέψη είναι μικρές λόγο μικρής πλαστιμότητας που προκαλεί η προένταση.

Σε προκατασκευασμένα από Ο.Σ και γενικά κατασκευές εξ ολοκλήρου από Ο.Σ προτεταμένες σε κατάλληλα επιμέρους σημεία, δεν υφίσταται πρόβλημα για την επίλυση του Άξονα Βέλτιστης Στρέψης ακόμα και στα Ασύμμετρα Πολυώροφα Κτίρια.

Μπορούμε να πούμε ότι..
Η Δύναμη είναι φορτίο, ροπή ή τάση, ενώ η Παραμόρφωση είναι επιμήκυνση, καμπυλότητα, βέλος ή στροφή.

Η δύναμη και η παραμόρφωση συνυπάρχουν ως οντότητα, διότι η μία δεν υφίσταται χωρίς την άλλη.

Προυπόθεση για να υπάρξουν αυτές οι δύο οντότητες είναι η ύλη, η οποία εμπεριέχει δυνάμεις, και παραμορφώνεται από εσωτερικές και εξωτερικές επιδράσεις φορτίων.

Με την ίλη μπορείς να κατασκευάσεις διάφορα σχήματα, από τα οποία εξαρτάτε η τιμή της δύναμης και της παραμόρφωσης.

Η τιμή της δύναμης και της παραμόρφωσης εξαρτάτε και από άλλους παράγοντες όπως είναι η σύνθεση της ύλης, που καθορίζει το βάρος της και την αντοχή της, η επιτάχυνση εξωτερικών φορτίσεων η οποία επηρεάζει τις παραμορφώσεις, καθώς και η αντοχή της βάσεως όπου εδράζεται η ύλη.

Στον φέροντα οργανισμό ενός έργου, η δύναμη και η παραμόρφωση είναι το Α και το Ω στην στατική και δυναμική των κατασκευών.
Παραλείψαμε κάτι από τα πάρα πάνω?
Ναι.
Την πάκτωση ή την προένταση της κατασκευής με το έδαφος, ( δηλαδή την σύνδεσή της κατασκευής με αυτό, ) καθώς και την πλαστιμότητα των κατασκευών, ή την ακαμψία αυτών.

Άλλες δυνάμεις και παραμορφώσεις συντελούνται όταν ο φέροντας είναι ασύνδετος με το έδαφος,.... άλλες δυνάμεις και παραμορφώσεις συντελούνται όταν ο φέροντας είναι πακτωμένος με το έδαφος,... άλλες δυνάμεις και παραμορφώσεις συντελούνται όταν ο φέροντας είναι προτεταμένος με το έδαφος, και άλλες δυνάμεις και παραμορφώσεις συντελούνται αν ο φορέας είναι πλάστιμος, και άλλες όταν είναι άκαμπτος.

Το ερώτημα που τίθεται είναι πια από τις πέντε μεθόδους είναι πιο κατάλληλη για την στατική και δυναμική των κατασκευών???

Δεδομένου ότι η σχεδιαζόμενες κατασκευές πλάστιμες ή άκαμπτες που απλός εφάπτονται του εδάφους θεμελίωσης είναι δοκιμασμένες στην πεπατημένη των κατασκευών, τίθεται το ερώτημα αν οι άλλες μέθοδοι που για πρώτη φορά προτείνω χρίζουν εφαρμοσμένης έρευνας.

Ακόμα πια μέθοδος είναι λογική ώστε να έχουμε τις μικρότερες παραμορφώσεις???
Θέλουμε ή δεν θέλουμε μικρότερες παραμορφώσεις στις δομικές κατασκευές?
Η πλαστιμότητα είναι παραμόρφωση ναι ή όχι?

Που είναι καλύτερα να έχουμε αρμονική απόσβεση της ταλάντωσης?...στο δώμα, κάθετη στα κάθετα στοιχεία, ή πλαγίως των κάθετων στοιχείων ή και στα δύο επιμέρους σημεία?

seismic

Αιτίες αστοχίας αδρανή οπλισμού, και σφάλματα του Ε.Α.Κ

α) Ποιος είναι αυτός που πιστεύει ότι οι κόμβοι ενός φέροντος οργανισμού, έχουν την δυναμική αντοχή να παραλάβουν τα φορτία του φέροντα?
Πιστεύω ότι δεν είναι δυνατόν, όταν ο κάθετος άξονας του φέροντα αλλάζει μοίρες λόγο της ταλάντωσης που προκαλεί ο σεισμός, να αλλάζει μοίρες και ο οριζόντιος άξονας.

Η παραμόρφωση του κόμβου είναι αναπόφευκτη.

Η αύξηση του οπλισμού δεν προσφέρει πολύ καλά αποτελέσματα, διότι περαιτέρω αύξηση οπλισμού, πρέπει να ακολουθείται με περαιτέρω αύξηση της διαστασιολόγισης του σκυροδέματος, οπότε και με περισσότερα φορτία τα οποία αυξάνουν το βάρος του φέροντα που συμβάλει στην μεγαλύτερη καταπόνηση με ροπές και τέμνουσες τους κόμβους.

Η μόνη λύση είναι να σταματήσουμε τον κατακόρυφο άξονα του φέροντα να αλλάζει μοίρες κατά την ταλάντωση του σεισμού.
Μόνο τότε θα σταματήσουμε τα στατικά φορτία του φέροντα να προκαλούν αστοχία στους κόμβους.

Ο Ε.Α.Κ εφαρμόζει ως κανόνα την πλαστιμότητα, λόγο αδυναμίας των κόμβων να παραλάβουν τα στατικά φορτία του φέροντα.

Η πλαστιμότητα είναι μία λύση για μικρούς σεισμούς, η οποία έχει ένα βασικό μειονέκτημα το οποίο είναι η παραμόρφωση.

Η παραμόρφωση σημαίνει στην καλύτερη των περιπτώσεων επισκευές, και στην χειρότερη ....αστοχία.

β) Ξέρουμε, και αναφέραμε σε προηγούμενη απάντηση ότι,... Το σκυρόδεμα χαρακτηρίζεται από ικανή θλιπτική αντοχή,
αλλά από πολύ μικρή εφελκυστική αντοχή. ( 1/12 της θλιπτικής αντοχής του )

Για να παραλάβει τις κάμψις του φορέα, οπλίζεται σε επί μέρους σημεία με χάλυβα ο οποίος έχει εφελκυστικές αντοχές.

Με την απαίτηση μεγαλυτέρων ελεύθερων χώρων, το άνοιγμα των οριζόντιων καμπτόμενων φορέων αυξάνει και μαζί τους αυξάνει και η καμπτική επιπόνηση του φορέα.

Οι αναπτυσσόμενες εφελκυστικές και θλιπτικές τάσεις αποκτούν μεγάλο μέγεθος, και η λύση του οπλισμένου σκυροδέματος αποδεικνύεται ανεπαρκής.

Από μία τιμή του ανοίγματος και πέραν, φορείς από οπλισμένο σκυρόδεμα δεν μπορούν να αντέξουν ούτε το ίδιο τους το βάρος.

Ξέρετε γιατί συμβαίνει αυτό???

Για μένα συμβαίνει για έναν και μόνο λόγο.
Όχι γιατί οι θλιπτικές αντοχές του ξεπερνούν τα όρια σε θλίψη, διότι αν ήταν αυτός ο κύριος λόγος, αν αυξάναμε την διατομή του καθ ύψος, θα είχαμε και αύξηση της θλιπτικής του ικανότητας.

Το πρόβλημα για μένα είναι ότι .....τον εφελκυσμό τον παραλαμβάνει ο χάλυβας.
Για να παραλάβει όμως ο χάλυβας τον εφελκυσμό, πρέπει τα άκρατου να είναι καλά πακτωμένα μέσα στο σκυρόδεμα, για να υπάρξει η απαιτούμενη ισόποση αντίσταση στον εφελκυσμό που προκαλείτε στον χάλυβα από τα φορτία .

Αυτή είναι η αδυναμία του σκυροδέματος.
Μετά από μία ορισμένη τιμή τάσης, αυτό αδυνατεί να πακτώσει αρκετά ικανά τον χάλυβα.

Όσο χάλυβα και να βάλετε στο σκυρόδεμα, όσους γάντζους και να κάνετε, μετά από μία τιμή τάσης, η πάκτωση του χάλυβα από το σκυρόδεμα είναι ανεπαρκής και αστοχεί.
Έχετε δει ποτέ τον χάλυβα κομμένο μετά από αστοχία?

Π.Χ οπλίστε μία κολόνα από βούτυρο με όσα χάλυβα θέλετε...αυτή θα αστοχήσει διότι ποτέ δεν θα παραλάβουμε τις πραγματικές αντοχές του χάλυβα στον εφελκυσμό, λόγο αδυναμίας πάκτωσης αυτού από το βούτυρο.

Για τους πάρα πάνω λόγους χρειάζεται ο ελκυστήρας, ο οποίος αφενός καταργεί την μεγάλη ταλάντωση και αφετέρου πακτώνει καλύτερα και προκαταβολικά τα άκρα του τένοντα, αυξάνοντας συγχρόνως την αντοχή του φέροντα στις τέμνουσες.
Ακόμα σχεδιάζετε με τον Ε.Α.Κ?

seismic

Τα πειράματα δε γίνονται μόνο μέσα στα εργαστήρια, ούτε καν στον φυσικό κόσμο που μας περιβάλλει, προκαλώντας μας συνεχώς να λύσουμε τα μυστήριά του. Τα πειράματα γίνονται μέσα...

στο νου των ανθρώπων πρώτα από όλα κι από κει ξεκινούν το ταξίδι τους για να δοκιμαστούν και να εφαρμοστούν οπουδήποτε αλλού.

Κάποια όμως από αυτά, παραμένουν εκεί που γεννήθηκαν: στη χώρα του νου.

Ακόμα όμως και αυτά τα πειράματα που γίνονται στις σεισμικές βάσεις, δεν αντιπροσωπεύουν το αληθές για έναν και μόνο λόγο....πακτώνουν με βίδες τον φέροντα με την σεισμική βάση.
Αυτό δεν αντιπροσωπεύει το αληθές των σχεδιαζόμενων σημερινών κατασκευών.
Αντιπροσωπεύει την ευρεσιτεχνία μου.

Άλλες χρίσεις του Ελκυστήρα Δομικών Έργων. ( πλην της αντισεισμικής προστασίας. )

Η ισχυρή πάκτωση με το βραχώδες ή ιλαρό έδαφος που εφαρμόζετε με τον μηχανισμό του ελκυστήρα, τον κάνει τον πλέον κατάλληλο για χρήσεις πάκτωσης διάφορων εφαρμογών όπως

α) Στήριξη των ξύλινων κολονών της Δ.Ε.Η με συρματόσχοινα
β) Πάκτωση των τροχόσπιτων με το έδαφος για την προστασία από τους ανεμοστρόβιλους.
γ) Πάκτωση για αερογέφυρες
δ) Προστασία πρανών από κατολισθήσεις βράχων, όπως συμβαίνει στα Τέμπη.
ε) Αντιστήριξη τοιχίων στην εθνική οδό.
ζ) Πάκτωση των ελαφριών σπιτιών και κατασκευών για προστασία από τον ανεμοστρόβιλο
η) Πάκτωση του τένοντα των γεφυρών
Γενικά είναι η καλύτερη πάκτωση εδάφους για διάφορες χρίσεις στήριξης, όπως να παραλάβει φορτία θεμελίωσης, ή τάσεις εφελκυσμού, ή συμπύκνωση εδάφους.


1) Γιατί πρέπει να πακτώνουμε τα κάθετα στοιχεία του φέροντα με το έδαφος με τον μηχανισμό του ελκυστήρα?.....

Για να σταματήσουμε την παραμόρφωση όλων των κόμβων που προκαλεί η ταλάντωση.
Για να σταματήσουμε τις ροπές που δημιουργούν τις τέμνουσες στους κόμβους.

2) Γιατί αντί μιας απλής πάκτωσης της κατασκευής με το έδαφος, είναι προτιμότερη η προένταση της κατασκευής με το έδαφος στα πλαίσια της επαλληλίας ?....

Για πολλούς λόγους...
Ο κυριότερος λόγος είναι ότι έχουμε τα καλά της προέντασης, όπου καταστούν τα κάθετα φέροντα στοιχεία υπερστατικά.
Σαν υπερστατικά κάθετα φέροντα στοιχεία έχουν ....

α) μεγαλύτερες αντοχές στην τέμνουσα βάσης ( ξεπερνούν το 33% )

β)μικρότερη στρεπτική ευαισθησία του κτιρίου στα πολυώροφα κτίρια με ασύμμετρες κατόψεις, οπότε και μικρότερη παραμόρφωση.

γ)Περισσότερες κρίσιμες διατομές σε κάμψη.

Περισσότερες κρίσιμες διατομές στα κάθετα φέροντα στοιχεία, επιτρέπουν ανακατανομή των πλάγιων φορτίσεων του σεισμού σε περισσότερα σημεία των κολονών, μειώνοντας ή και καταργώντας κατ αυτόν τον τρόπο τον μηχανισμό ορόφου, που προκαλείτε κατά κύριο λόγο, λόγο τις συγκέντρωσης των φορτίσεων σε μία κρίσιμη διατομή ενός ορόφου της πολυκατοικίας, με αποτέλεσμα την αστοχία.

3) Γιατί έχουμε δύο ειδών ελκυστήρες?...( τον υδραυλικό ελκυστήρα, και τον απλό ελκυστήρα )

Για δύο κύριους λόγους.
Ο πρώτος λόγος είναι οικονομικός.
Ο απλός ελκυστήρας στοιχίζει λιγότερο από τον υδραυλικό ελκυστήρα.
Χρησιμεύει για να πακτώνουμε ή να εφαρμόζουμε προένταση σε κατασκευές που εδράζονται σε πετρώδη θεμελίωση.
Ο λόγος που είναι κατάλληλος για πετρώδη θεμελίωση, είναι διότι κατά την ταλάντωση του κτηρίου η άγκυρα του μηχανισμού δεν διατρέχει τον κίνδυνο να απαγκιστρωθεί από τα πρανή της γεώτρησης λόγο της υποχώρησης αυτών, διότι όπως ξέρουμε τα στερεά δεν συμπιέζονται.

Ο υδραυλικός ελκυστήρας είναι για χαλαρά εδάφη, και είναι υδραυλικός για να διορθώνει την τάνυση του τένοντα όταν...

α) τα πρανή της γεώτρησης παραμορφωθούν. ( μεγαλώσουν λόγο της πίεσης που υφίσταται από τις μακροχρόνιες τάσεις που δέχονται )
β) όταν ο χάλυβας του τένοντα χαλαρώσει λόγο της έρπης που υφίσταται από την μακροχρόνια τάση που δέχεται.
γ) όταν ο χάλυβας του τένοντα χαλαρώσει λόγο συρρίκνωσης του σκυροδέματος κατά την μακροχρόνια ξήρανση.

Ακόμα βοηθάει την κατασκευή ( λόγο του υδραυλικού συστήματος )

α) να μην πάθει καθίζηση όταν υποχωρήσει το έδαφος κάτω από την βάση.

β) Εφαρμόζει Φθίνουσα αρμονική ταλάντωση μέσω του υδραυλικού συστήματος της ευρεσιτεχνίας στον φέροντα,
ώστε να έχουμε αρμονική απόσβεση των φορτίσεων που εφαρμόζει πλαγίως η ταλάντωση.

γ) ελέγχει την πλαστιμότητα καθορίζοντας εκ των προτέρων την ακτίνα καμπυλότητας του φέροντα και των κάθετων στοιχείων, ώστε η στάθμη επιπόνησης του φορέα να μην υπερβεί τα όρια και εισέλθει στην στάθμη αστοχίας.

seismic

Μπορούμε να πούμε ότι..
Η Δύναμη είναι φορτίο, ροπή ή τάση, ενώ η Παραμόρφωση είναι επιμήκυνση, καμπυλότητα, βέλος ή στροφή.

Η δύναμη και η παραμόρφωση συνυπάρχουν ως οντότητα, διότι η μία δεν υφίσταται χωρίς την άλλη.

Προυπόθεση για να υπάρξουν αυτές οι δύο οντότητες είναι η ύλη, η οποία εμπεριέχει δυνάμεις, και παραμορφώνεται από εσωτερικές και εξωτερικές επιδράσεις φορτίων.

Με την ίλη μπορείς να κατασκευάσεις διάφορα σχήματα, από τα οποία εξαρτάτε η τιμή της δύναμης και της παραμόρφωσης.

Η τιμή της δύναμης και της παραμόρφωσης εξαρτάτε και από άλλους παράγοντες όπως είναι η σύνθεση της ύλης, που καθορίζει το βάρος της και την αντοχή της, η επιτάχυνση εξωτερικών φορτίσεων η οποία επηρεάζει τις παραμορφώσεις, καθώς και η αντοχή της βάσεως όπου εδράζεται η ύλη.

Στον φέροντα οργανισμό ενός έργου, η δύναμη και η παραμόρφωση είναι το Α και το Ω στην στατική και δυναμική των κατασκευών.
Παραλείψαμε κάτι από τα πάρα πάνω?
Ναι.
Την πάκτωση ή την προένταση της κατασκευής με το έδαφος, ( δηλαδή την σύνδεσή της κατασκευής με αυτό, ) καθώς και την πλαστιμότητα των κατασκευών, ή την ακαμψία αυτών.

Άλλες δυνάμεις και παραμορφώσεις συντελούνται όταν ο φέροντας είναι ασύνδετος με το έδαφος,.... άλλες δυνάμεις και παραμορφώσεις συντελούνται όταν ο φέροντας είναι πακτωμένος με το έδαφος,... άλλες δυνάμεις και παραμορφώσεις συντελούνται όταν ο φέροντας είναι προτεταμένος με το έδαφος, και άλλες δυνάμεις και παραμορφώσεις συντελούνται αν ο φορέας είναι πλάστιμος, και άλλες όταν είναι άκαμπτος.

Το ερώτημα που τίθεται είναι πια από τις πέντε μεθόδους είναι πιο κατάλληλη για την στατική και δυναμική των κατασκευών???

Δεδομένου ότι η σχεδιαζόμενες κατασκευές πλάστιμες ή άκαμπτες που απλός εφάπτονται του εδάφους θεμελίωσης είναι δοκιμασμένες στην πεπατημένη των κατασκευών, τίθεται το ερώτημα αν οι άλλες μέθοδοι που για πρώτη φορά προτείνω χρίζουν εφαρμοσμένης έρευνας.

Ακόμα πια μέθοδος είναι λογική ώστε να έχουμε τις μικρότερες παραμορφώσεις???
Θέλουμε ή δεν θέλουμε μικρότερες παραμορφώσεις στις δομικές κατασκευές?
Η πλαστιμότητα είναι παραμόρφωση ναι ή όχι?

Που είναι καλύτερα να έχουμε αρμονική απόσβεση της ταλάντωσης?...στο δώμα, κάθετη στα κάθετα στοιχεία, ή πλαγίως των κάθετων στοιχείων ή και στα δύο επιμέρους σημεία?

seismic

Η συνεργασία μεταξύ σκυροδέματος και χάλυβα σε μια κατασκευή από Ο.Σ. επιτυγχάνεται με τη συνάφεια.
Με τον όρο συνάφεια ορίζεται η συνδυασμένη δράση των μηχανισμών που παρεμποδίζουν τη σχετική ολίσθηση μεταξύ των ράβδων του οπλισμού και του σκυροδέματος που τις περιβάλλει.

Οι επιμέρους μηχανισμοί της συνάφειας είναι η πρόσφυση, η τριβή και, για την περίπτωση ράβδων χάλυβα με νευρώσεις, η αντίσταση του σκυροδέματος το οποίο εγκλωβίζεται μεταξύ των νευρώσεων.

Η συνδυασμένη δράση των μηχανισμών αυτών θεωρείται ισοδύναμη με την ανάπτυξη διατμητικών τάσεων στη επιφάνεια επαφής σκυροδέματος και χάλυβα.

Όταν οι τάσεις αυτές φθάσουν στην οριακή τιμή τους επέρχεται καταστροφή της συνάφειας με τη μορφή διάρρηξης του σκυροδέματος κατά μήκος των ράβδων και αποκόλλησης των ράβδων χάλυβα.

1) Το ερώτημα είναι αν η συνάφεια μεταξύ χάλυβα και Ο.Σ είναι μικρότερη από την εφελκυστική ικανότητα του χάλυβα.

Αν είναι μικρότερη, τότε δεν καταλαβαίνω τι νόημα έχει ο επιπλέον οπλισμός ( για την παραλαβή μεγαλύτερων εφελκυστικών τάσεων ) πέραν της αντοχής της συνάφειας μεταξύ χάλυβα και Ο.Σ.

Βέβαια η μείωση των τάσεων επιτυγχάνεται με αύξηση της επικάλυψης και μείωση της διαμέτρου των ράβδων του οπλισμού.

Η αύξηση της οριακής τιμής τους επιτυγχάνεται με αύξηση της αντοχής του σκυροδέματος.

Η παρουσία εγκάρσιου οπλισμού (συνδετήρων) δρα ευνοϊκά περιορίζοντας το άνοιγμα των αναπτυσσόμενων ρωγμών στη επιφάνεια οπλισμού και σκυροδέματος.

2) Ερώτημα...καλά όλα αυτά αλλά, πως αντιμετωπίζουμε την διαφορετικότητα της ελαστικότητας του σκυροδέματος και του χάλυβα πάνω στην ακτίνα καμπυλότητας?

Δηλαδή κατά την ταλάντωση του φέροντα τα κάθετα στοιχεία ( κολόνες ) εμφανίζουν την ακτίνα καμπυλότητας η οποία εξωτερικά των στοιχείων τείνει να μεγαλώσει, αξιώνοντας από την επικάλυψη του σκυροδέματος να είναι πιο πλάστιμη και από τον χάλυβα αν δεν θέλουμε την αστοχία του.

Αφού ξέρουμε ότι η πλαστιμότητα του Ο.Σ είναι κατά πολύ μικρότερη της πλαστιμότητας του χάλυβα, αυτό δεν είναι μεγάλο πρόβλημα συμβάλλοντας στην αστοχία?

Για εμένα είναι μεγάλο πρόβλημα για τρεις βασικούς λόγους.

α) διότι το σκυρόδεμα αδυνατεί να είναι τόσο ελαστικό ώστε να επιμηκυνθεί όσο απαιτεί η ακτίνα καμπυλότητας, και αφετέρου

β) η συνάφεια καταστρέφεται διότι δημιουργούνται μεγάλες διατμητικές τάσεις μεταξύ χάλυβα και σκυροδέματος λόγο
διαφορετικής ακτίνας καμπυλότητας που έχουν αυτά τα υλικά λόγο της θέσεως που κατέχουν στο υποστύλωμα.

και γ) Αν ένα υλικό είναι πλάστιμο όπως είναι ο χάλυβας, και το άλλο υλικό είναι μη πλάστιμο όπως είναι το σκυρόδεμα,...πιστεύω ότι αυτή η σχέση δημιουργεί μεγάλες ακτινωτές διατμητικές τάσεις στην συνάφεια των δύο υλικών.

Τελικά η πλαστιμότητα δεν είναι τόσο πλάστιμη σε υλικά διαφορετικής πλαστιμότητας.
Μήπως οι υπερστατικοί ( προτεταμένοι με το έδαφος ) φορείς είναι καλύτεροι ?

Υ.Γ
Ξέρουμε ότι σε έναν φορέα εάν αρχίσει το φαινόμενο του λυγισμού, ο οπλισμός τείνει να επιμηκυνθεί, για να ακολουθήσει τον λυγισμό του κάθετου στοιχείου.

Επειδή όμως ο χάλυβας υπόκεινται σε μεγάλες εφελκυστικές τάσεις, αντιδρά στην παραμόρφωση που του επιβάλουν τα εξωτερικά φορτία του σεισμού.

Ερώτημα που αντιδρά ακριβώς ο οπλισμός?
Αντιδρά
α) στην συνάφεια που υπάρχει μεταξύ αυτού και του σκυροδέματος
β) στο περισφιγμένο σκυρόδεμα, που προσπαθεί πλάγιο αξονικά με καμπτικές τάσεις να του μεγαλώσει την ακτίνα καμπυλότητας.
Ερώτημα
Αν αυτό εφαρμόζει το περισφιγμένο σκυρόδεμα στον χάλυβα το ίδιο δεν εφαρμόζει και ο χάλυβας στην επικάλυψη του σκυροδέματος?
Αυτό με την σειρά του εγκρίνεται.
Για τους λόγους αυτούς, θα ήταν καλό να περιορίσουμε την πλαστιμότητα
Βλάπτει σοβαρά τις κατασκευές, αν αυτές δεν είναι κατασκευασμένες από λάστιχο.

Από την προηγούμενη ανάρτηση βγάζουμε το συμπέρασμα ότι.
Ο σημερινός γραμμικός οπλισμός των κάθετων στοιχείων πρέπει να είναι μικρής διατομής ( οπότε περισσότερες βέργες χάλυβα στα ίδια σχεδιαζόμενα κιλά οπλισμού ) ώστε σε συνδυασμό με τον πυκνό εγκάρσιο οπλισμό ( τσέρκια ) να εγκλωβίζουν το περισφιγμένο σκυρόδεμα ώστε όταν αυτό αστοχήσει να διατηρεί τα κομμάτια του σκυροδέματος στον χαλύβδινο κλωβό για την αποφυγή της κατάρρευσης του δομικού έργου.

Για τον σημερινό σχεδιαζόμενο υπολογισμό της σεισμικής απόκρισης μιας κατασκευής απαιτείται η επίλυση των δυναμικών εξισώσεων ισορροπίας.
Στην φόρτιση ενός σεισμού, πρέπει να υπολογίσουμε τα εντατικά, και παραμορφωσιακά μεγέθη, καθώς και την μετατόπιση του άξονα καμπυλότητας σε κάθε φάση του σεισμού, σε συνδυασμό με την αλληλεπίδραση εδάφους κατασκευής.

Με τις λίγες γνώσεις που έχω, καταλαβαίνω ότι προσπαθείτε να σχεδιάσετε τις κατασκευές στα όρια των εντατικών μεγεθών παραμόρφωσης της πλαστιμότητας των υλικών στις φορτίσεις του σεισμού.

Εδώ είναι που πρέπει να καταλάβετε κάτι πολύ απλό.
α) Ενώ εσείς βάζετε τον χάλυβα να συνεργασθεί με το σκυρόδεμα μέσο της συνάφειας των δύο υλικών ώστε κατάλληλα τοποθετημένα να παραλάβουν το καθένα τον εφελκυσμό και την θλίψη, εγώ κάνω κάτι άλλο .....
Κάνω προένταση
Με την προένταση καταργούμε στην ουσία την συνάφεια των δύο υλικών, και βάζουμε το κάθε ένα από αυτά τα δύο υλικά ξεχωριστά να παραλάβουν αυτό που μπορούν καλύτερα να παραλάβουν...δηλαδή ο χάλυβας τον εφελκυσμό, και το σκυρόδεμα την θλίψη.
β) Με το υδραυλικό σύστημα που τοποθετώ στο δώμα βασικά κάνω το εξής ....

1) Καταργώ τα εντατικά μεγέθη τις παραμορφώσεις και τις μετατοπίσεις των φορτίσεων του σεισμού στον φέροντα οργανισμό, γιατί ελέγχω την ταλάντωση με το υδραυλικό σύστημα και μεταβιβάζω μέσο αυτού όλα αυτά τα μεγέθη σε δύο βασικούς κάθετους άξονες.

Ο πρώτος άξονας είναι ο άξονας του τένοντα ο οποίος αναλαμβάνει όλα τα μεγέθη του εφελκυσμού, εξαντλώντας 100% την αντοχή του διότι δεν εξαρτάτε από την συνάφειά του με το σκυρόδεμα.
Ο δεύτερος κάθετος άξονας είναι το τοιχίο, κολόνα, το οποίο αναλαμβάνει αποκλειστικά μόνο τα κάθετα θλιπτικά φορτία του σεισμού, και του ιδικού βάρους τις κατασκευής.

Δεν υφίστανται για να επιλύσουμε μετατοπίσεις και παραμορφώσεις, γιατί αυτά ελέγχονται από το υδραυλικό σύστημα το οποίον αναλαμβάνει πλήρως τον έλεγχο της ακτίνας καμπυλότητας τόσο των κάθετων στοιχείων, όσο και του κτηρίου.....τα μόνα που πρέπει να επιλύσουμε είναι τα εντατικά μεγέθη εφελκυσμού του τένοντα, και τα εντατικά μεγέθη της θλίψης του κάθετου στοιχείου, καθώς και την κάμψη αυτού.
Πρώτα υπολογίζουμε την αδράνεια όλων των πλακών, και κατόπιν υπολογίζουμε πόσα προτεταμένα ή πακτωμένα με το έδαφος τοιχία και κολόνες χρειάζονται, ώστε να παραλάβουν την αδράνεια του κτιρίου.


Αν μάλιστα αντί πάκτωση εφαρμόσουμε προένταση στα κάθετα στοιχεία στα πλαίσια της επαλληλίας, τότε καταργούμε τον μηχανισμό ορόφου, διότι πολλαπλασιάζουμε τις κρίσιμες διατομές.
Περισσότερες κρίσιμες διατομές στα κάθετα φέροντα στοιχεία, επιτρέπουν ανακατανομή των πλάγιων φορτίσεων του σεισμού σε περισσότερα σημεία των κολονών, μειώνοντας ή και καταργώντας κατ αυτόν τον τρόπο τον μηχανισμό ορόφου, που προκαλείτε κατά κύριο λόγο, λόγο τις συγκέντρωσης των φορτίσεων σε μία κρίσιμη διατομή ενός ορόφου της πολυκατοικίας, με αποτέλεσμα την αστοχία.
Ακόμα αν εφαρμόσουμε προένταση με φόρτιση 50% της αντοχής του υποστυλώματος αυξάνουμε τουλάχιστον κατά 33% την αντοχή στην τέμνουσας βάσης.

seismic

Ξέρουμε ότι για τον σημερινό σχεδιαζόμενο υπολογισμό της σεισμικής απόκρισης μιας κατασκευής απαιτείται η επίλυση των δυναμικών εξισώσεων ισορροπίας.
Ακόμα ξέρουμε ότι αν έχουμε έναν ταλαντωτή, κατά την ταλάντωση του η εξωτερική κάθετη επιφάνειά του εφελκύεται και η εσωτερική κάθετη επιφάνειά του θλίβεται. ( Αυτό συμβαίνει και στις κολόνες )
Το ερώτημα είναι....η επίλυση των δυναμικών εξισώσεων ισορροπίας, πως είναι καλύτερα να λυθεί ?
α) με την μέθοδο του ισοστατικού φορέα, ή
β) με την μέθοδο του υπερστατικού φορέα?

Ακόμα
Ο υδραυλικός ελκυστήρας εισάγει μία πρόσθετη αντίδραση προς τις επιβαλλόμενες φορτίσεις του σεισμού, που δεν υφίσταται στις σχεδιαζόμενες σημερινές κατασκευές, ώστε η επίλυση των δυναμικών εξισώσεων ισορροπίας, να είναι εφικτές.

Αυτή την αντίδραση, την παίρνει από την πακτωμένη άγκυρα του μηχανισμού του ελκυστήρα με το έδαφος, και την μεταβιβάζει μέσω του τένοντα στο δώμα.
Δηλαδή βάζουμε το έδαφος ( μέσω του μηχανισμού του ελκυστήρα ) να αντιδράσει στο δώμα για να σταματήσουμε την ταλάντωση η οποία παραμορφώνει τον εξωτερικό κάθετο άξονα της κολόνας.

Στο πρώτο ερώτημα τώρα...
Το ερώτημα είναι....η επίλυση των δυναμικών εξισώσεων ισορροπίας, της κολόνας πως είναι καλύτερα να λυθεί ?
α) με την μέθοδο του ισοστατικού φορέα, ή
β) με την μέθοδο του υπερστατικού φορέα?
Δηλαδή με τον σημερινό σχεδιασμό, ή με την μέθοδο του ελκυστήρα ο οποίος εισάγει μία κάθετη προένταση ή απλός μία αντίσταση στο δώμα?
1) εισάγοντας μία πρόσθετη αντίσταση ισορροπίας του φέροντα έναντι των φορτίσεων του σεισμού, αυτό μόνο θετικό μπορεί να είναι.
Το έδαφος προκαλεί το πρόβλημα,...το έδαφος θα το λύσει....
2) είναι λάθος να πιστεύουμε μόνο στην σινάφια του σκυροδέματος με τον χάλυβα, διότι δημιουργούνται πάρα πολλά άλλα προβλήματα, και από μόνη της δεν είναι ικανή να εξισώσει την αντοχή του χάλυβα στον εφελκυσμό.
Χρειάζεται εκτός από την σινάφια, και μία πρόσθετη ισχιρή πάκτωση στα δύο άκρα του χάλυβα. ( όπως γίνεται με την προένταση )
3) Στην προένταση δεν υφίστανται η σινάφια, και αυτό γιατί ο τένοντας διαπερνά ελεύθερος ( μέσο ενός σωλήνα ) όλο το μήκος του κάθετου άξονα της κολόνας.
Για τον λόγο αυτόν η προένταση έχει ένα μεγάλο πλεονέκτημα που δεν έχει ο απλός οπλισμός.
Πιο είναι αυτό το πλεονέκτημα?
Είναι...
Ο χάλυβας πριν αστοχήσει έχει εξαντλήσει το 100 της % της εφελκυστικής του ικανότητας, ενώ με τον απλό οπλισμό η αστοχία επέρχεται πριν όταν αστοχήσει η σινάφια των δύο υλικών.

1) Εισάγοντας μία αξονική αντίδραση στο δώμα, ( πάκτωση εδάφους δώματος ) σταματάμε την μεγάλη ταλάντωση.
2) Εισάγοντας μία αξονική προένταση μεταξύ δώματος και εδάφους στα πλαίσια της επαλληλίας των δύο υλικών, έχουμε τα καλά της προέντασης που ξέρουμε από την βιβλιογραφία, αλλά και από αυτά που έχω αναφέρει στις προηγούμενες αναρτήσεις.

ΧΡΟΝΙΑ ΠΟΛΛΑ

KostasD33

[quote user="seismic" post="372009"]
....
....
....
1) Εισάγοντας μία αξονική αντίδραση στο δώμα, ( πάκτωση εδάφους δώματος ) σταματάμε την μεγάλη ταλάντωση.
2) Εισάγοντας μία αξονική προένταση μεταξύ δώματος και εδάφους στα πλαίσια της επαλληλίας των δύο υλικών, έχουμε τα καλά της προέντασης που ξέρουμε από την βιβλιογραφία, αλλά και από αυτά που έχω αναφέρει στις προηγούμενες αναρτήσεις.

ΧΡΟΝΙΑ ΠΟΛΛΑ[/quote]

Γιαννάκο ειλικρινά τα δικά σου είναι τα πιο πρωτότυπα και πακτωμένα χρόνια πολλά που διάβασα ...

Χρόνια πολλά και με υγεία χωρίς σεισμούς καταστροφικούς ...

seismic


seismic

Μέθοδοι προέντασης του υδραυλικού και του απλού ελκυστήρα

Η προένταση που εφαρμόζουμε με τον υδραυλικό ή με τον απλό ελκυστήρα, δεν εφαρμόζεται από τον ίδιο τον μηχανισμό των ελκυστήρων.
Η αρχική προένταση εφαρμόζεται με την βοήθεια εξωτερικών ελκυστήρων του εμπορείου, σε κάθε περίπτωση.

Ο μηχανισμός του Υ/Ε και του Α/Ε απλός διατηρούν την προένταση στις αρχικές εντάσεις που τους έχουν επιβάλει οι ελκυστήρες του εμπορείου.
Κάθε δομικό έργο είναι ξεχωριστό και πρέπει να σχεδιάζεται και να επιλύεται σύμφωνα με τις ανάγκες των δυναμικών εξισώσεων ισορροπίας.
Οι ελκυστήρες Υ/Ε και Α/Ε είναι σχεδιασμένοι έτσι ώστε να πληρούν τις ανάγκες των δυναμικών εξισώσεων ισορροπίας των δομικών έργων.
Κάθε ένας από αυτούς είναι σχεδιασμένος έτσι ώστε με την κατάλληλη μέθοδο εφαρμογής, και το κατάλληλο σημείο τοποθέτησης, να επιτυγχάνει την επίλυση προβλημάτων που έχουν σχέση με την...
α) Χαλαρότητα των εδαφών, την έρπη του τένοντα και την συρρίκνωση του σκυροδέματος
β) Στιβαρότητα - καθορίζει τίς ιδιοπεριόδους
γ)Αντοχή - όριο ελαστικής συμπεριφοράς
δ)Πλαστιμότητα - μηχανισμός απόσβεσης εισερχόμενης σεισμικής ενέργειας.


Ο Υδραυλικός Ελκυστήρας, είναι ο ρυθμιστής των επιβαλλόμενων σεισμικών παραμορφώσεων στα δομικά έργα

α) Αν μπορέσουμε να ελέγξουμε, ή αλλιώς να οριοθετήσουμε καθ όλον το ύψος του κάθετου άξονα την ταλάντωση του φέροντα κατά την διάρκεια ενός σεισμού, τότε έχουμε οριοθετήσει εν μέρη και τις παραμορφώσεις του φέροντα

β) Αν μπορέσουμε να ελέγξουμε την παραμόρφωση του εδάφους καθ όλον το εμβαδόν της κατασκευής, τότε έχουμε οριοθετήσει εν μέρη και τις παραμορφώσεις του φέροντα

γ) Αν μπορέσουμε να μεγαλώσουμε και την αντοχή των δομικών υλικών έναντι των επιβαλλόμενων σεισμικών παραμορφώσεων, θέτουμε νέα στάνταρ.

δ) Αν μπορέσουμε να ελέγξουμε αυτόματα με έναν μηχανισμό τα προβλήματα της προέντασης π.χ την έρπη του τένοντα κατά την μακροχρόνια τάνυση, ή την συρρίκνωση του σκυροδέματος κατά την μακροπρόθεσμη ξήρανση που χαλαρώνει τον τένοντα, τότε έχουμε
έναν υπερστατικό φορέα πολύ πιο ικανό στον χρόνο.

ε) Αν μπορέσουμε να διαμοιράσουμε τις σεισμικές φορτίσεις ομοιόμορφα και να τις κατευθύνουμε ( όχι εκεί που θέλουν αυτές, αλλά..) σε διατομές ικανές να τις παραλάβουν αυτό καταργεί τον μηχανισμό ορόφου.


ζ) Αν μπορέσουμε να ελέγξουμε τις έντονες στρεπτομεταφορικές ταλαντώσεις στα Ασύμμετρα Πολυώροφα Κτίρια, που προκαλείτε από τα δάπεδα των ορόφων όπου υφίστανται ταυτόχρονα μεταφορικές και στρεπτικές μετακινήσεις, τότε θα έχουμε οριοθετήσει εν μέρη και τις παραμορφώσεις του φέροντα.

η) Αν το υδραυλικό μέρος του ελκυστήρα είναι ένας μηχανισμός απόσβεσης εισερχόμενης σεισμικής ενέργειας, αυτό βοηθάει την πλαστιμότητα των στοιχείων, απορροφώντας από αυτά μεγάλη σεισμική ενέργεια.
Αν τοποθετήσουμε στο υδραυλικό σύστημα και έναν αυτόματο ρυθμιστή υδραυλικής πίεσης θαλάμου, τότε προσδιορίζουμε αυτόματα και μακροπρόθεσμα την ταλάντωση του φέροντα στις επιθυμητές τιμές, ώστε αυτός να μην αστοχήσει σε οποιαδήποτε σεισμική φόρτιση.

Όλα αυτά που ανέφερα, είναι τα προβλήματα που λύνει ο Υδραυλικός ελκυστήρας, και η μέθοδος κατασκευής που προτείνω.
Είναι ένας άλλος ικανοτικός σχεδιασμός.

Ερωτήσεις δεκτές για το πως επιτυγχάνουμε την επίλυση προβλημάτων που έχουν σχέση με τα άνωθεν.

seismic

α) Αν μπορέσουμε να ελέγξουμε, ή αλλιώς να οριοθετήσουμε καθ όλον το ύψος του κάθετου άξονα την ταλάντωση του φέροντα κατά την διάρκεια ενός σεισμού, τότε έχουμε οριοθετήσει εν μέρη και τις παραμορφώσεις του φέροντα
Δηλαδή μπορούμε να ελέγξουμε την καμπύλη συμπεριφοράς ή καμπύλη ικανότητας του φέροντα εξασκώντας μία κάθετη αντίδραση ή προένταση στο δώμα, προερχόμενη από το έδαφος μέσο του μηχανισμού του ελκυστήρα, και αφετέρου με την κατάλληλη διαστασιολόγηση των κάθετων στοιχείων του φορέα σχεδιάζοντας δύσκαμπτα κάθετα στοιχεία με μικρό συντελεστής συμπεριφοράς, μεγάλες διαστάσεις, και μικρό ελαστικό φάσμα απόκρισης, τότε έχουμε και την άλλη κατάλληλη επιθυμητή αντίδραση ( εκτός του δώματος ) που εφαρμόζετε στο αντικριστό Π της βάσης του κάθετου στοιχείου στο ύψος της θεμελίωσης.

Αυτές οι δύο αντιδράσεις, δώματος - βάσης,του κάθετου στοιχείου, είναι η δυναμική εξίσωση ισορροπίας προς τις πλάγιες φορτίσεις του σεισμού.

seismic

Γενικές παρατηρήσεις

Ο σεισμός στην πράξη δεν παραμορφώνει τον φέροντα οργανισμό.
Η παραμόρφωση εφαρμόζετε από την άρνηση σου φέροντα και των υλικών που φέρει να ακολουθήσει την φορά και την επιτάχυνση του εδάφους.
Σήμερα σχεδιάζουμε με απλοποιημένες μεθόδους, ( εμπειρικές ) χωρίς να υπολογίζουμε την πλήρη δυναμική ανάλυση των κατασκευών.
Σχεδιάζουμε με «ισοδύναμη» στατική ελαστική ανάλυση αντί της πλήρους δυναμικής ανελαστικής ανάλυσης.
Θεωρείται δηλαδή ότι η κατασκευή μπορεί να σχεδιαστεί με μικρότερη φόρτιση, από εκείνη που αναμένεται να παραλάβει, λόγω της δυνατότητάς της να παραμορφωθεί αρκετά πέραν της ελαστικής περιοχής χωρίς να καταρρεύσει.

Τα ερώτημα που θέτω είναι τα εξής.
α) Γιατί σχεδιάζουμε ελαστικές κατασκευές και όχι άκαμπτες?
β) Πως δημιουργούνται οι μηχανισμοί εφαρμογής της τέμνουσας?
Είναι ένας ο μηχανισμός ή περισσότεροι?
γ) Θεωρούμε τις σχεδιαζόμενες κατασκευές πακτωμένες με το έδαφος. Αυτό αληθεύει ναι ή όχι?

Απαντήσεις
α) Γιατί σχεδιάζουμε ελαστικές κατασκευές και όχι άκαμπτες?
Η απάντηση που θα έδινε ένας μηχανικός σήμερα θα ήταν η εξής.
Οι ελαστικές κατασκευές θεωρούνται ως ένα ιδεατό ελαστικό σύστημα, όταν αυτές είναι μέσα στα επιτρεπτά όρια ενός εμπειρικού φάσματος απόκρισης με ανεκτό συντελεστή συμπεριφοράς.
Θεωρείται δηλαδή ότι η κατασκευή μπορεί να σχεδιαστεί με μικρότερη φόρτιση, από εκείνη που αναμένεται να παραλάβει, λόγω της δυνατότητάς της να παραμορφωθεί αρκετά πέραν της ελαστικής περιοχής χωρίς να καταρρεύσει.
Αυτή η δυνατότητάς της να παραμορφωθεί αρκετά πέραν της ελαστικής περιοχής χωρίς να καταρρεύσει λέγεται πλαστιμότητα, και είναι ένας μηχανισμός απόσβεσης εισερχόμενης σεισμικής ενέργειας.

Εγώ θα απαντούσα ως εξής
Είναι πολύ σωστό να έχουμε έναν μηχανισμό απόσβεσης εισερχόμενης σεισμικής ενέργειας.
Αλλά...θα ήταν καλύτερα αν είχαμε δύο ή και τρεις μηχανισμούς απόσβεσης εισερχόμενης σεισμικής ενέργειας.
1) Πρώτος μηχανισμός απόσβεσης εισερχόμενης σεισμικής ενέργειας.είναι η πλαστιμότητα του φέροντα.
2) Δεύτερος μηχανισμός απόσβεσης είναι ο υδραυλικός μηχανισμός του υδραυλικού ελκυστήρα ο οποίος εφαρμόζει μία ελαστική αυξομειωμένη αντίσταση στο δώμα εμποδίζοντας αυτό να ανέλθει όταν ταλαντεύεται ο φέροντας οργανισμός http://postimage.org/image/sf8visncn/
3) Τρίτος μηχανισμός απόσβεσης είναι μία άλλη μέθοδος κατασκευής του φέροντα οργανισμού.
Σε αυτήν την μέθοδο τοποθετούμε μέσα στον ελαστικό φέροντα οργανισμό έναν ή περισσότερους άλλους φέροντες ( με μικρότερη ελαστικότητα ) ανεξάρτητους από τον φέροντα, που τους περιβάλει.
Οι ανεξάρτητοι συνεχόμενοι καθ ύψος μικροί φέροντες ( για αρχιτεκτονικούς λόγους μπορεί να είναι π.χ φρεάτια ανελκυστήρων, αποθήκες, δωμάτια κ.λ.π ) πρέπει να είναι στιβαρές κατασκευές τοποθετημένες σε διάφορα σημεία του φέροντα, με τις κατάλληλες διαστάσεις και αντοχές, ώστε να μπορούν να παραλάβουν μεγάλα θλιπτικά φορτία για να αντέξουν την προένταση και την αντίδραση της θεμελίωσης στην βάση, καθώς και στρεπτομεταφορικές ταλαντώσεις.

Η σύγκρουση που θα υφίσταντο οι φέροντες μεταξύ των αποφεύγετε με την τοποθέτηση ελαστικών ή υδραυλικών αποσβεστήρων.
Στο link αυτό http://postimage.org/image/14tj1webo/ φαίνονται καθαρά οι μαύροι ελαστικοί μηχανισμοί απόσβεσης εισερχόμενης σεισμικής ενέργειας, τοποθετημένοι στο ύψος των πλακών.
Αυτή η μέθοδος είναι κατάλληλη για πολύ ψιλές κατασκευές, διότι
1) Με την τοποθέτηση των κατάλληλων μαλακών ή σκληρών αποσβεστήρων σεισμικής ενέργειας καθ ύψος, καταργούμε τον μηχανισμό ορόφου
2) Η πλαστιμότητα του μεγάλου φέροντα, οπότε ο αρχικός μηχανισμός απόσβεσης εισερχόμενης σεισμικής ενέργειας δεν καταργείται.
3) Αν τοποθετήσουμε υδραυλικούς ελκυστήρες σε όλους τους ανεξάρτητους φέροντες ( και σε αυτόν που τους περιβάλει και στους εσωτερικούς σε επί μέρους κατάλληλα σημεία ) τότε έχουμε τριπλή απόσβεσης εισερχόμενης σεισμικής ενέργειας, τόσο στην πλαστιμότητα του φέροντα, όσο και στο δώμα στο υδραυλικό τμήμα του Υ/Ε αλλά και πλάγιο αξονική απόσβεση των μετακινήσεων των πλακών πάνω στους ελαστικούς αποσβεστήρες.

Υπάρχουν και άλλοι λόγοι που σχεδιάζουμε ελαστικές κατασκευές και όχι άκαμπτες?

Ο κυριότεροι λόγοι είναι δύο
α) ότι δεν έχουμε κατανοήσει ακριβώς πως ο σεισμός παραμορφώνει τον φέροντα, ( επαρκή ανάλυση φορτίσεων )και
β) δεύτερον δεν έχουμε κατανοήσει επαρκώς τους μηχανισμούς που γεννούν τις τέμνουσες.

Αν ξέραμε .... τότε θα ξέραμε και την μέθοδο να αντιμετωπίσουμε το πρόβλημα, και η ελαστική κατασκευή θα ήταν δευτερεύων παράγοντας σχεδίασης.
Αδυνατώντας να κάνουμε την πραγματική ανάλυση των δυναμικών συνιστωσών, έχουμε βρει την εύκολη λύση στην πλαστιμότητα, και στο να λέμε ότι η σεισμική φόρτιση είναι επιβαλλόμενη
παραμόρφωση και όχι επιβαλλόμενη φόρτιση

Θεωρούμε τις σχεδιαζόμενες κατασκευές πακτωμένες με το έδαφος. Αυτό αληθεύει ναι ή όχι?

Τα λάθη που κάνουμε είναι ότι θεωρούμε την κατασκευή πακτωμένη με το έδαφος ( λόγο φορτίων ) ενώ αυτή δεν είναι επαρκώς πακτωμένη.
Μερικός πακτωμένες κατασκευές με τον σημερινό σχεδιασμό, θεωρώ μόνο τις κατασκευές που έχουν δύο, τρία υπόγεια.
Αυτές οι κατασκευές έχουν αποδειχθεί πιο ισχυρές..... γιατί?
Μήπως έχω δίκαιο σε αυτά που λέω για την πάκτωση ή την προένταση της κατασκευής με το έδαφος?
Γιατί άλλη κατασκευή είναι αυτή που πατάει στο έδαφος, και άλλη είναι η κατασκευή που συνδέεται με το έδαφος μέσο του τένοντα.
Διαβάστε την ανάρτηση 55 για να καταλάβετε αυτά τα θεμελιώδη βασικά δεδομένα στην ανάλυση δυνάμεων που αγνοούνται στον σημερινό σχεδιασμό.

β) Πως δημιουργούνται οι μηχανισμοί εφαρμογής της τέμνουσας?
Είναι ένας ο μηχανισμός ή περισσότεροι?

Όλες οι παραμορφώσεις του φέροντα καταλήγουν σε τέμνουσες ...λόγο αντίδρασης των υλικών του προς την αδράνεια του να ακολουθήσει την φορά και την επιτάχυνση του σεισμού.

Το σχήμα που σχεδιάζουμε τις κατασκευές είναι ο μηχανισμός που δημιουργεί τρεις διαφορετικές τέμνουσες.
α) Την τέμνουσα που δημιουργεί η αδράνεια του φέροντα, και είναι καθαρά θέμα αδράνειας και επιτάχυνσης ( μεταφορικός λόγος )
β) Την τέμνουσα που δημιουργείται στους κόμβους, και είναι καθαρά θέμα ταλάντωσης και στατικών φορτίων που γεννούν ροπές στους κόμβους που καταλήγουν σε τέμνουσες.
γ) Στα πολυώροφα κτίρια με ασύμμετρες κατόψεις τα οποία υποβάλλονται σε οριζόντιες σεισμικές δυνάμεις, τα δάπεδα των ορόφων υφίστανται ταυτόχρονα μεταφορικές και στρεπτικές μετακινήσεις, οπότε και στρεπτικές τέμνουσες

Πως η ευρεσιτεχνία βοηθάει τον φέροντα να αντισταθεί σε αυτές τις τέμνουσες

α) Εφαρμόζοντας προένταση αυξάνομαι την αντοχή των υλικών στις μεταφορικές τέμνουσες.
β) Εφαρμόζοντας προένταση ή πάκτωση σταματάμε τις μετακινήσεις του φέροντα ( την ταλάντωση ) οπότε και τις ροπές στους κόμβους, αφού αυτοί δεν παραμορφώνονται πια.
γ) Εφαρμόζοντας προένταση αυξάνομαι την αντοχή των υλικών στις μεταφορικές τέμνουσες.
Μεταφορικές τέμνουσες είναι και οι στρεπτικές τέμνουσες.
Αν εφαρμόσουμε και την μέθοδο που περιέχει τον τρίτο μηχανισμό απόσβεσης ( που ανέφερα σε αυτήν την ανάρτηση ) αυτή είναι πολύ πιο αποτελεσματική στις στρεπτικές τέμνουσες.

Μάλιστα η τρίτη μέθοδος απόσβεσης σεισμικής ενέργειας, είναι η μόνη μέθοδος η οποία εκτός των άλλων είναι η μόνη που μπορεί να συνεργαστεί με εφέδρανα για να έχουμε και οριζόντια σεισμική μόνωση .

Συν του ότι ...Αν μπορέσουμε να ελέγξουμε την παραμόρφωση του εδάφους καθ όλον το εμβαδόν της κατασκευής, τότε έχουμε οριοθετήσει εν μέρη και τις παραμορφώσεις του φέροντα

Συν του ότι... Αν μπορέσουμε να ελέγξουμε αυτόματα με έναν μηχανισμό τα προβλήματα της προέντασης π.χ την έρπη του τένοντα κατά την μακροχρόνια τάνυση, ή την συρρίκνωση του σκυροδέματος κατά την μακροπρόθεσμη ξήρανση που χαλαρώνει τον τένοντα, τότε έχουμε
έναν υπερστατικό φορέα πολύ πιο ικανό στον χρόνο.

Όλα αυτά κάνουν τον υδραυλικό ελκυστήρα ..
το απόλυτο αντισεισμικό σύστημα όλων των δομικών κατασκευών

276 Επισκέπτες, 0 Χρήστες